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Abstract

A laboratory experiment illustrates cognitive limitations in decision-making
that may be relevant for modeling price-setting. Our subjects systematically
depart from the optimal Bayesian response in several respects. Their responses
are random, even conditioning on available information. Subjects adjust in
discrete jumps rather than after each new piece of information, and by both
large and small amounts, contrary to the predictions of an “Ss” model of optimal
adjustment subject to a fixed cost. And they prefer to report “round numbers,”
even when that requires additional effort. A model of inattentive adjustment
is found to quantitatively outperform popular alternatives.
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1 Introduction

A central problem in macroeconomics is understanding the ways in which house-

holds and firms respond to changing market conditions, with a particular emphasis

on how the immediate (or relatively short-run) effects of new developments differ

from the adjustments that eventually occur. When behavior is observed at the micro

level, continuous decision variables (such as the price that a firm charges for a given

product) are often observed to change only at discrete points in time, even though

relevant market conditions are changing continuously; this is often attributed to fixed

costs of adjustment (“menu costs” in the case of prices), though there is often little

direct evidence about the magnitude of such costs. Here we present evidence for an

alternative view, under which such discrete adjustment economizes on the cognitive

resources of decision-makers.

This paper attempts to shed light on the nature of discrete adjustment dynamics

using a laboratory experiment. While there are obvious questions about the similar-

ities between the task faced by our subjects and those faced in settings of relevance

for macroeconomic modeling (such as firms’ pricing decisions), a laboratory exper-

iment also has important advantages. We can treat the decision-maker’s objective

as known, to the extent that we assume that our subjects care only about maxi-

mizing their monetary payment from the experiment, and we can ensure that many

complications sometimes supposed to be relevant for firms’ pricing decisions are not

determinants of our subjects’ behavior. We can also be quite certain about exactly

what information the decision-maker has at each point in time; not only do we know

everything that the experimental subject has had an opportunity to observe, but we

know what she ought to understand about the data-generating process, and hence

what inferences could rationally be drawn from the information presented. Finally,

the laboratory setting allows us to perform multiple replications of the same environ-

ment and to vary the environment to draw causal inferences.

Our experiment is a forecasting exercise in which one of two outcomes can occur
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on each trial, and the subject must estimate the probability of a particular outcome.

The underlying probability shifts from time to time, but it is likely to remain the same

for many successive trials, offering an opportunity to estimate the current probability

from observation of past draws. This kind of exercise allows us to test alternative

theories of expectation formation, including the familiar benchmark of “rational ex-

pectations.” At the same time, the subjects’ problem can be viewed as an example

of a more general class of problems, in which there is a continuous decision variable

(here, the subject’s announced probability estimate), with the payoff from a given

action depending on the current value of continuous state variable (here, the true

probability of an outcome), which varies over time (so that it is necessary to continue

monitoring), but is sufficiently persistent to make attempts to monitor the changing

state variable worthwhile. Viewed in this way, it is an example of the same basic kind

of decision problem faced by a firm that must set a price for its product, where the

profits obtained by charging a given price depend on other state variables (demand

conditions and factor costs) that fluctuate over time.

In fact, despite the differences in the setting, our experimental data exhibit some

notable (and puzzling) features of data on individual prices, as we discuss further

below. In particular, our subjects usually leave their decision variable unchanged for

periods of time, despite the receipt of many new pieces of information in the meantime,

and despite having a continuum of possible responses at each point in time. Since

there are no true (external) adjustment costs in our problem, and subjects have (and

we believe, are able to understand) all of the information needed to obtain the optimal

estimate at each point in time, we conclude that their failure to track the optimal

Bayesian estimate more closely reflects imperfect attention, limited memory or related

cognitive limitations.1

1Our experimental design differs importantly from that of Magnani, Gorry and Oprea (2016),
who study how well an “Ss” model fits laboratory data on the timing of adjustments. Their ex-
perimental setup imposes an external fixed cost of adjustment, in order to ensure that adjustment
will be discrete, but considers whether adjustments are optimally timed; we are instead interested
in observing discrete adjustment even when subjects are free to adjust at any time. Their setup
also requires that when adjustment occurs, the decision variable is moved to exactly the currently
optimal state, whereas we are interested in where the decision variable will be set when subjects are
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We further demonstrate that our data are consistent with the predictions of a

particular quantitative model of inattentive choice in a number of important respects.

This model generalizes the model of inattentive discrete adjustment developed in

Woodford (2009), most importantly by allowing not only the timing of adjustments

but also the choice of where to set the decision variable conditional on adjustment

to be inattentive. We compare the quantitative fit of our model with other models

of random discrete adjustment, such as the “generalized Ss model” of Caballero and

Engel (1993, 2007) and the optimizing models with random fixed costs of adjustment

proposed by Dotsey, King and Wolman (1999) and Dotsey and King (2005). While

the latter models describe the adjustment dynamics that we observe better than a

simple “Ss model,” we find that the rational inattention model outperforms these

alternatives significantly.

Section 2 describes our experiment. Section 3 gives an overview of some of the

salient features of the behavior that we observe, focusing on the ways in which sub-

jects’ behavior resembles or differs from the predictions of the ideal Bayesian (or

rational expectations) benchmark. Section 4 discusses the extent to which various

models of discrete adjustment that have been common in the macroeconomic litera-

ture, especially the literature on price adjustment, can account for our data. Section

5 offers a concluding discussion.

2 The Experimental Design

Our laboratory experiment follows the setup of Gallistel et al. (2014), who study

how well subjects can predict probabilities.2 The subjects’ task is to estimate the

probability that the next draw is a green ring from a box with both green and red

rings. The subjects draw rings with replacement from the box and indicate their

draw-by-draw estimate. Figure 1 shows a screenshot of the experiment. The screen

displays the box with a hidden number of red and green rings on the left. The slider at

free to set it anywhere.
2We modify their experiment in a number of respects, because of the different focus of our study,

as discussed in the online appendix.
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Task: Subjects estimate the hidden probability parameter of 
a stepwise non-stationary Bernoulli process outcome by 
outcome	
 
!

Study Design  
Procedure!

Figure 1: Experiment screenshot. The box of rings contains an unknown number of green
and red rings. Subjects use the mouse to adjust the slider to their current estimate of the
probability that the next draw from the box is a green ring. Their estimate is displayed
numerically above the slider and visually both using the slider and in the box on the right
side of the screen. Subjects click the NEXT button to draw another ring from the box of
rings on the left. After each draw, the subject’s cumulative score is updated and displayed
at the top of the screen. Each session consists of 1,000 ring draws.

the bottom indicates the subject’s estimate on the current trial, p̂t, with the number

in percentage points displayed above the bar. The box on the right side of the screen

displays 1,000 rings that also depict the subject’s estimate visually. Whenever the

subject moves the slider, this box is adjusted in real time to reflect the probability

indicated by the slider position. The subject begins with a guess and adjusts the

position of the slider to indicate his or her estimate. Each time the subject clicks

the NEXT button, a new ring is drawn randomly from the box and displayed on the

screen. The subject may then adjust his or her forecast or leave it unchanged. After

each ring draw, the subject’s cumulative score is updated and displayed at the top of

the screen. This process is repeated until the session ends, after 1,000 ring draws.

For each session, the subject is rewarded with a fixed payment of $10 plus a

variable payment, equal to 2¢ × the subject’s cumulative score. For each trial t, if

the subject sets the slider at p̂t and the ring drawn is st (equal to 1 for a green ring

and 0 for a red ring), then the reward is r(p̂t; st) = 1−(st− p̂t)2. The total score is the
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sum of the rewards for all trials in a session. This payoff structure generates a non-

negative score that is increasing over the life of the session, to avoid loss aversion. If

one believes that a green ring will be drawn with probability pt (however this forecast

might be formed), then the expected reward, p[1 − (1 − p̂)2] + (1 − p)[1 − p̂2], is

maximized by setting the slider at p̂t = pt.
3 The monetary reward is only a function

of the history of the subject’s behavior and the sequence of draws thus far. Before

the start of the sessions, we explained to the subjects both the reward function and

the optimal decision rule, using both written and verbal instructions.

From time to time, the box of rings is replaced by a new box with a different

probability of drawing a green ring. The probability is initially drawn from a uniform

distribution between 0 and 1. After each ring draw, there is a constant probability

δ = 0.5% of a regime change. If there is a regime change, the new percentage of green

rings in the box is an independent draw from the uniform distribution on the unit

interval. The subjects are not told when a change in the box occurs, but they are

told in advance that the box might change, and they know the probability of a regime

change and the distribution from which the new box is drawn. The frequency of regime

changes is small enough relative to the number of noisy observations that subjects

receive, to enable them to learn the underlying probability. But it is nonetheless

changing, so that the subjects should continuously take into account the fact that

there may have been a regime change.

It is important to note that the timing of slider adjustments is completely up to

the subject. We also allow the subjects to control the speed at which they draw rings

so that they may choose how much attention to give to the task, rather than forcing

them to make decisions within an externally imposed time limit. This setup allows us

3We assume that the subjects are risk neutral for the small monetary rewards involved in the
experiment. This kind of quadratic scoring rule is often used in experiments intended to elicit
probability beliefs, for the reason given here (e.g., McKelvey and Page, 1990). In our case, we
are not primarily interested in eliciting subjects’ beliefs about the probability, but simply in their
performance on a tracking problem. However, choosing a task for which the optimal strategy is
to report one’s estimate of the probability makes it easy for us to explain the task to subjects,
and to make sure that any departures from the rational benchmark do not result from subjects’
misunderstanding of the task.
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to investigate the extent to which the subjects choose to update their forecast every

time they obtain a new piece of information. There is no explicit penalty for constant

adjustment and new information arrives frequently, which puts the finding of discrete

adjustment at odds with a large set of models, as we discuss in the next section.

Our setup is designed to minimize adjustment costs and to eliminate reasons for

habit preferences, such that there would be no reason to not have constant adjustment

to the currently optimal forecast in the absence of cognitive limitations. Addition-

ally, we control fully the information that subjects have at each point in time, which

allows us to test to what extent subjects are processing the information that is avail-

able to them. Finally, by controlling the true data generating process and what our

subjects know about it, we control what the correct prior is. Thus we do not need

to make conjectures about either the decision-makers’ objectives or the information

that is available to them, and we can focus instead on what our results indicate about

potential cognitive limitations. Since we explained all features of the setup to the sub-

jects, they have all the information needed to form the optimal rational expectations

forecast, and we can compare their performance to that of the ideal Bayesian agent.

An important question that arises our experimental study is that of external

validity: To what degree can we expect the behavioral regularities that we uncover

in the experimental data to persist in other economic environments? The answer to

this question depends on the degree to which the conditions that are relevant remain

relatively unchanged across environments. In our particular setting, even though we

place our subjects in a simple environment, the task that they face is an example

of a general class of tracking problems. Formally, it is analogous to the problem of

a pricing manager who sets the price of a product and whose task is to track the

profit-maximizing price as closely as possible, subject to any frictions and limitations

that might impede adjustment. There are some key features of the pricing problem

that also apply to our experimental task: it features a continuous decision variable,

the resulting profits depend on other state variables (demand, costs) that fluctuate

continuously over time, and finally, the manager making the pricing decision receives
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Figure 2: Experiment data for subject 11, session 10. The benchmark Bayesian forecast
(blue dashed line) and the subjective estimate (magenta solid) are plotted against the true
hidden probability (in black).

a steady stream of information about product demand, competitive pressures, cost

conditions, the macroeconomy, etc., and incorporates these factors in the price of the

product.

3 Features of Observed Behavior

Figure 2 shows an example of a typical session for a particular subject. The figure

plots the true hidden probability and the subject’s forecast, compared to that of a

Bayesian decision-maker who makes full use of all the information available.4 The

figure illustrates key features of the data that we document more systematically be-

low. Both the subject and the Bayesian decision-maker track the hidden probability

quite well, and they detect changes in this probability relatively quickly. The subject

outperforms the no-information rational benchmark (which would set the slider at

4The online appendix presents the Bayesian inference problem.
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0.5 on all trials), but underperforms the Bayesian benchmark. This pattern is true

for all our subjects (albeit to varying degrees): on average, the subjects’ scores are

2.5% lower than those of the Bayesian observers. Overall, the monetary gains from

exerting effort and processing information about the task are fairly low: on average,

the subjects would earn $26.60 per session under complete information (knowing the

hidden state) and $25.00 per session under the no-information benchmark. Neverthe-

less, the subjects are engaging with the task and exerting effort, closing a significant

fraction of the gap between the no-information and the complete-information extreme

benchmarks. In the experiment, the subjects’ average reward is $26.00 per session.5

One major distinction between our subject and the Bayesian observer is that

while the Bayesian forecast changes by a small amount after each ring draw, the

subject keeps his estimate unchanged for variable periods of time, and often adjusts

by large amounts. On average, the subject makes much larger and more infrequent

adjustments than the Bayesian decision-maker. This discreteness arises despite the

fact that there is no discreteness in the set of available actions, nor any explicit cost

of adjusting the slider in response to the stream of new information.

With these observations in mind regarding lumpiness in both the timing and the

size of adjustments, we now look more closely at some of the ways in which our

subjects’ forecasts differ from the predictions of the rational benchmark. We then use

these observations to motivate our subsequent consideration of a variety of adjustment

models.

3.1 Stochasticity

Our subjects’ deviations from the Bayesian benchmark are not simply due to

the use of some boundedly rational but deterministic rule (as for example in typical

“adaptive expectations” models). Instead, there is a random element in the subjects’

responses to any given history of evidence. This stochasticity is at odds with tra-

5The dollar amounts include a $10 fixed “show-up” fee. The online appendix presents different
measures of forecast bias as well as the cumulative scores for all subjects and for the corresponding
Bayesian observers, relative to the no-information and the complete-information benchmarks.
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Figure 3: Experiment data, subject 1 forecasts, all repeated sessions.

ditional economic models in which optimization rules out randomization, as well as

with many models of behavioral heuristics.

In 20 out of our 110 sessions, we showed the subjects the same sequence of rings.

These repeated sessions were never conducted on the same day for the same subject,

and there is no evidence that subjects were able to recognize the repetition. We find

substantial heterogeneity in different subjects’ responses to the given ring sequence,

but also in the responses of the same subject across the repeated sessions. Figure 3

shows the forecasts of subject 1 across the repeated sessions. The three forecast

series are correlated, since they are tracking the same sequence of realized rings, but

there is also considerable dispersion. The top panel of Figure 4 shows the cross-

sectional dispersion across all 20 repeated sessions. Throughout the session, there

is a wide range of forecasts that depart – at times substantially – from the rational

expectations benchmark. Cross-sectional dispersion has also been documented in

the pricing literature (see Kaplan and Menzio, 2015, for a recent addition to this

literature). While the price setting literature has largely focused on external frictions

(limits to arbitrage such as trade barriers and search costs) as the source of such

dispersion, our experimental data generates this dispersion in the absence of any

such frictions.
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Figure 4: Experiment data, all subjects, all repeated sessions. Trials are on the x-axis.
(a) Individual forecast series for all repeated sessions, (b) Bayesian posterior mean in blue,
median subject forecast and interquartile range in red, (c) Bayesian posterior variance in
blue (left axis) and subjective forecasts interquartile range in red (right axis).

Despite the considerable dispersion, the aggregate behavior over the 20 repeated

sessions tracks the RE prediction fairly well, as shown in the middle panel of the

figure, which plots the Bayesian forecast against the median slider position. This

evidence, while at odds with the classic definition of rational expectations (Lucas

(1972)), does provide some support for Muth’s (1961) hypothesis that while individual

behavior may deviate even substantially from rational expectations, it averages out

to the truth. It is important to emphasize, however, that even though the aggregate

appears to track the RE forecast, this finding does not mean that the RE forecast

suffices for macroeconomic analysis. The heterogeneity of responses implies greater

population dispersion in beliefs, and therefore actions, than would be predicted by the
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RE model. In turn, this dispersion often matters for welfare, as well as for statistics

like the volume of credit or trade.

We also uncover evidence of endogenous dispersion. The heterogeneity in forecasts

does not simply reflect exogenous noise in decisions, independent of the state. Instead,

the dispersion of forecasts is higher when objective uncertainty is higher, as measured

by the Bayesian posterior variance. We show this relationship in the bottom panel of

the figure: when the Bayesian posterior variance spikes, the cross-sectional dispersion

also rises. This evidence suggests that variation in cross-sectional dispersion may be

a reasonable proxy for uncertainty shocks, as it is sometimes used in the literature

on uncertainty.

3.2 Discrete Adjustment

In our experiment, subjects should adjust their forecast after each new ring draw,

since each draw provides additional information about the hidden probability that

subjects seek to track. Instead, our subjects adjust with various lags, even though

there are no explicit costs of adjustment. As shown in Figure 5, subjects exhibit

a wide range of wait times between adjustments, and there is no evident pattern

of time-dependence. There is also considerable variation in the size of the slider

adjustments conditional on adjustment, as shown by the distribution of adjustment

sizes in the lower left panel of the figure. Both of these features of our data diverge

from the predictions of the Bayesian benchmark. At the same time, the distribution

of adjustment sizes is also inconsistent with the bimodal distribution that would be

predicted by a simple “Ss model” of optimal adjustment. Such a model would predict

no small adjustments and also no adjustments larger than a certain magnitude, since

one would never drift that far away from the optimal forecast.

The distribution of step sizes and that of spell lengths instead resemble the dis-

tributions of product-level price changes in micro price data. For comparison, the

right panels of Figure 5 show the distribution of the size of price changes and of

the periods between price changes constructed for products in the AC Nielsen Retail
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Figure 5: Discreteness. (a) Distribution of the number of ring draws between adjustments
(all subjects and all sessions). (b) Distribution of the number of weeks between price
changes (AC Nielsen Retail Scanner data; y-axis truncated). (c) The same distribution,
but removing transitory price changes. (d) Distribution of the size of changes in the slider
position, counting only trials on which the slider is moved (all subjects and all sessions).
(e) Distribution of the size of price changes, conditional on adjustment (AC Nielsen Retail
Scanner data). (f) The same distribution, but removing transitory price changes.

Scanner data, using both raw prices and regular prices, which exclude transitory price

changes. Both our experimental data and the price data generate a distribution for

the size of adjustment that is leptokurtic. However, in our experiment, this feature

arises spontaneously, as a result of the subjects’ behavior, rather than for the rea-

sons proposed in the pricing literature, such as leptokurtic shocks or opportunities to

adjust that depend on other decisions (such as the repricing of other products).

Ricci and Gallistel (2017) document discreteness in a variant experiment in which

the underlying probability changes continuously, rather than jumping on infrequent

discrete occasions. They report a mean wait time between adjustments of approxi-
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Figure 6: Experiment data. Distribution of the subjects’ slider position choices for (a) the
full sample and (b) subject 2.

mately 30 trials. This suggests that the discrete slider adjustments that we observe

are not an artifact of our subjects’ knowledge that the true underlying probability

moves in discrete jumps.

3.3 Round-Number Bias

Our subjects also exhibit a bias towards selecting “round numbers” when choosing

where to position the slider. As shown in Figure 6, subjects are more likely to estimate

the hidden proportion of green rings using numbers that are multiples of 0.05. This

bias is common to all of our subjects, to varying degrees. Subject 2 is a particularly

stark example of this behavior, as illustrated in the right panel of the figure.

This discreteness in the chosen slider positions is another significant departure

from the RE benchmark, which would predict a flat distribution. It occurs even

though there is no discreteness in the distribution from which the hidden probability is

drawn (which is continuous uniform between 0 and 1), or in the set of available actions

(the mouse moves continuously6). There is also no sense in which the experiment

makes it either easier or more profitable to choose certain slider positions over others.

6The step size of the mouse is 10−7, hence much finer than even the estimate that is displayed
on the subjects’ screen (which is on the order of 10−4)
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Figure 7: Experiment data. Cumulative distribution functions of the Bayesian posterior
variance when the subjects’ forecasts are round numbers versus when they are not round,
for trials on which hidden probability is inside the interval [0.15, 0.85]. Forecasts are defined
as round if they are multiples of 0.05 when rounded to the third decimal.

Nevertheless, our subjects appear to exert considerable effort to set the slider at or

near these preferred numbers. We conclude that these round decimal numbers offer

some cognitive advantage that compensates for the effort needed to select them.

For trials on which the hidden probability is not too close to 0 or 1, the use of

round numbers is associated with higher uncertainty, as shown in Figure 7, which

plots the cumulative distribution function for the Bayes posterior variance for trials

on which subjects report round forecasts versus those on which they report non-

round forecasts, for values of the hidden probability inside the interval [0.15, 0.85].

Round forecasts are multiples of 0.05 when rounded to the third decimal. This finding

confirms research in cognitive psychology and linguistics that has associated the use

of round numbers (such as multiples of five or ten) with conveying uncertainty about

the quantity being expressed (e.g. Albers and Albers, 1983). It also supports the

method of Binder (2017), who exploits rounding behavior in survey data to develop

a novel measure of forecast uncertainty.

The evidence for round number bias also mirrors the patterns found in product-

level retail price data, where prices alternate among a small set of values for fairly
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long periods of time (Eichenbaum et al., 2011, and Stevens, 2015), and where 9 is

the most frequently used price-ending for the penny, dime, dollar and the ten-dollar

digits, and where multiples of dimes, dollars and ten-dollars are the most common

price changes (Levy et al, 2011).

4 Modeling Discrete Adjustment

We study the degree to which our experimental data conform to the predictions of

a variety of different possible models of discrete adjustment of the decision variable,

with a particular focus on types of models that have been popular in the macroeco-

nomic literature on price adjustment. Given the evidence that subjects do not adjust

continuously, it is useful to decompose a model of discrete adjustment into two parts:

first, a criterion that determines when the slider will be adjusted, and second, a crite-

rion that determines where the slider position will be set, conditional on adjustment.

We consider a variety of alternative models of each of these decisions.

4.1 “Gap-Based” Models of Adjustment

Under the Bayes-optimal benchmark, no “Bayesian gap” ∆t ≡ p∗t − p̂t should

ever exist. This is plainly not the case in our experiment, as we have documented in

Section 3. One might however still hypothesize that the size of the “Bayesian gap”

should determine whether there is sufficient reason to adjust the slider. For example,

we might hypothesize that adjustment should occur if and only if the gap is either

above some upper threshold or below some lower threshold, as in an “Ss model.”

More generally, we might suppose, as in the “generalized Ss models” of Caballero

and Engel (1993, 2007), that there are no sharp thresholds, but that instead the

probability of adjustment of the slider in any period is given by some continuous

function of the Bayesian gap Λ(∆t).

Figure 8 shows the fraction of trials on which the slider is adjusted, if the data

are sorted into bins according to the value of the Bayesian gap at the time of the

decision whether to adjust the position. The figure is consistent with the existence
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Figure 8: Hazard functions for the slider adjustment probability as a function of the
Bayesian gap. (a) Nonparametric empirical hazard plotting the fraction of trials on which
adjustment occurs, for each range of values of the gap, with equal-width bins. (b) The
best-fitting logistic-polynomial hazard function. (Coefficients given in Table 1.)

of a non-uniform hazard function, which is furthermore decreasing for ∆ < 0 and

increasing for ∆ > 0, as assumed by Caballero and Engel. We note, however, that

our data do not appear to support the further common assumption that the hazard

falls to zero at least when ∆ = 0, if not over some larger “zone of inaction.”

Thus there is at least some degree of “state-dependence” of the decision to adjust

the slider. We can quantify the degree of state-dependence by computing how much

the likelihood of our data is increased by allowing the adjustment hazard to depend

on the Bayesian gap. We consider parametric families of possible hazard functions

Λk(∆; θ), where θ is a vector of k parameters, and we choose both the family of

models (the value of k) and a specific model within that family (the value of the

parameter vector θ) so as to minimize the Bayes Information Criterion (BIC), BIC ≡

−2LL + k logN, where LL is the log likelihood of the data and N is the number of

observations.

Suppose that the log odds of adjustment, λ(∆) ≡ log Λ(∆)
1−Λ(∆)

, is a polynomial
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function of ∆, with k − 1 ≥ 0 the order of the polynomial,

λk(∆; θ) =
k−1∑
j=0

θj∆
j. (1)

In the case of our data, the BIC is minimized when λ(∆) is a quadratic function, with

coefficients {θj} given in the top panel of Table 1. The implied hazard function Λ(∆)

is shown in the right panel of Figure 8. The best-fitting hazard function reaches its

minimum near ∆ = 0, and approaches 1 for large enough positive or negative values

of the gap; but even at its minimum, the probability of adjustment is positive.

The degree to which the data support these conclusions can be determined by

comparing the minimum values of the BIC statistic for more restrictive families of

models. For example, if we assume a constant hazard function (as in the Calvo (1983)

model of adjustment), then as indicated in Table 1, the minimum BIC statistic is

higher by 1,318 natural log points. Thus the data increases the relative posterior

probability that the quadratic log odds model is correct by a factor greater than

10286, relative to the hypothesis of no dependence of the adjustment decision on the

Bayesian gap.7

As another example, we consider the degree to which the data support the con-

clusion that the hazard function is asymmetric, by considering the more restrictive

family of only symmetric polynomials. We again find that the best-fitting polyno-

mial is quadratic, but the BIC statistic is only 0.7 log points higher than in the

unconstrained case, indicating only weak evidence in favor of an asymmetric hazard

function.

While we are able to reject the hypothesis of no dependence on the Bayesian gap

(the Calvo model), our data are also inconsistent with the strong degree of state-

dependence assumed in a simple Ss model, in which adjustment never occurs for gaps

within some fixed thresholds, and occurs with certainty for gaps outside them. Any

such model will have an unboundedly large BIC statistic. This exact version of an

7See the appendix for discussion of our use of the BIC statistic to determine the relative posterior
probabilities of alternative models.
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TABLE 1: Best fitting models

Models k Parameters BIC

Gap Models θ0 θ1 θ2

Constant hazard 1 -2.33 – – 59,325
Polynomial hazard 3 -2.53 -0.23 7.76 58,006.5
Symmetric poly. 2 -2.53 – 7.82 58,007.3

Gap Models with Errors ε ∆ ∆̄
Ss with errors 3 0.089 -0.641 0.771 59,329
Symmetric Ss 2 0.089 -0.923 0.923 59,336

Value Models θ0 θ1 ε1 ε2 ∆̄
Constant hazard 1 -2.33 – – – – 59,325
Polynomial hazard 2 -2.49 0.95 – – – 58,169
Ss with errors 2 – – 0.089 0.911 4.03 59,285
Step function 3 – – 0.083 0.207 0.60 58,663

Value Model with Inattention θ0 θ1 ψ1 Λ̃
Rational inattention 2 -2.052 0.816 1.225 0.1139 57,598

Polynomial coefficients and BIC for the log odds of adjustment, λ(∆) ≡ log Λ(∆)
1−Λ(∆) , a

polynomial function of ∆, with k − 1 ≥ 0 the order of the polynomial, and λk(∆; θ) =∑k−1
j=0 θj∆

j . Top panel: Coefficients and BIC for the best-fitting models within the Bayesian

gap class of models. Middle panel: Coefficients and BIC for the best fitting models that

allow adjustment to depend on the expected value of adjustment, assuming optimization

subject to a random fixed cost of adjustment. Bottom panel: Coefficients, BIC and implied

model parameters for the model assuming that adjustment economizes on information costs.

Ss model may seem a straw man, so we also consider a generalization in which it

is assumed that there will inevitably be some random error in the execution of any

decision with regard to adjustment: that even when a decision to adjust is made,

the slider will only be adjusted with probability 1 − ε, and when a decision not to

adjust is made, the slider will nonetheless be adjusted with probability ε, for some

0 < ε < 1/2. But even allowing for errors of this kind, the minimum value of the

BIC statistic remains 1,323 log points higher under a model with sharp thresholds

than under the quadratic log odds model. If we assume that the thresholds must

18



be symmetric, reducing the number of free parameters by one, the BIC statistic

further increases by 7 log points. Hence, we conclude that the adjustment decision

is state-dependent — with the Bayesian gap providing at least an imperfect proxy

for the relevant state — and furthermore, that the Caballero-Engel hypothesis of a

continuous hazard function fits the data better than a model with sharp thresholds.

We turn next to the question of where the slider is moved when it is adjusted.

Caballero and Engel (1993, 2007) assumed, as in the classic “Ss” model, that when

the decision variable is adjusted, it is moved to its current (myopically) optimal value.

In the present context, this would correspond to a hypothesis that p̂t is set equal to

p∗t . Panel (b) of Figure 10 shows a scatter plot of the values of p̂t and p∗t for all of

the trials on which the slider is adjusted. Under the simple hypothesis, all of these

points should lie on the diagonal. We do observe some relationship between the two

variables; in fact, a linear regression of p̂t on p∗t yields a regression line quite close to

the diagonal. Nonetheless, there is clearly a great deal of noise in the relationship,

not predicted by the simple hypothesis that the “Bayesian gap” should be eliminated

whenever the slider is adjusted.

4.2 Optimizing Models with a Fixed Cost of Adjustment

We next consider the extent to which our data are consistent with more explicitly

optimizing (and more forward-looking) models in which the decision whether to adjust

the slider is assumed to be optimal (expected-payoff maximizing) on each trial, subject

to a fixed cost of adjustment. Note that while there is no cost in terms of points

deducted from the subject’s score when the slider is moved, one might suppose that

there is nonetheless a utility cost of having to move the mouse to adjust the slider

position, a utility cost of the additional delay before proceeding to the next trial,8 or

a cognitive cost of having to decide where to move the slider.

Consider first the classic “menu cost” models of price adjustment such as Sheshin-

8We note that there is a time cost of slider adjustment for our subjects: on average, subjects
take only 1.4 seconds to request the next ring on trials where they do not move the slider, but 4.4
seconds on trials where they move the slider before requesting the next ring.
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ski and Weiss (1977, 1983). Because the cost of adjustment is the same regardless of

the new position chosen, whenever the slider is adjusted, the new position p̂t should

be chosen to maximize Vt(p), where for any possible slider position 0 ≤ p ≤ 1, Vt(p)

is the expected cumulative payoff from all remaining trials (net of adjustment costs

on trials after t) if the slider is set at p. The slider should then be adjusted on trial t

if and only if the “value gap” ∆t ≡ maxp Vt(p) − Vt(p̂t−1) is greater than or equal

to κ, the fixed cost of adjustment. Note that the value function Vt(p) will depend not

only on the number of the trial t, but also on the (optimal Bayesian) posterior πt at

that time; the argument πt has been suppressed to simplify the notation.

We can alternatively assume, as in the generalized model of state-dependent pric-

ing proposed by Dotsey, King and Wolman (1999), that the fixed cost of adjust-

ment is a random variable, drawn independently on each trial from some distribution

with CDF G(κ).9 The probability of adjustment on trial t should then be given

by a non-decreasing hazard function Λ(∆t) = G(∆t), where the “value gap” ∆t

is again defined as above. If the distribution of fixed costs is continuous (contains

no atoms), the hazard function Λ(∆) must be a continuous, non-decreasing function

with Λ(0) = 0. It is possible, however, to have Λ(0) > 0 if we suppose that there is a

positive probability of a zero fixed cost, as in the model of Calvo (1983).

The empirical content of either version of the model depends on evaluating the

value function Vt(p). We would like to compare alternative models of the adjustment

decision on a single trial using a measure of the value gap that is (to the extent

possible) independent of assumptions regarding behavior in later trials. As explained

further in the appendix, we estimate an atheoretical statistical model of subjects’

behavior after any trial t conditional on the slider setting p̂t chosen on that trial and

the posterior πt at that point, and use this atheoretical model to compute an implied

value function Vt(p). We can then test the degree to which both the timing of slider

adjustments and the new slider positions chosen are consistent with the predictions

above, under any assumption about the distribution of fixed costs.

9Caballero and Engel (1999) propose a similar model of optimization with random fixed costs as
a micro-foundation for the type of “generalized Ss model” proposed in Caballero and Engel (1993).
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(a) Value model
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(b) RI model

Figure 9: Adjustment probability as a function of the value gap: the best-fitting logistic-
polynomial hazard function as a function of the value gap. (Coefficients given in Table
1.)(a) Value gap computed under an assumption that if the slider is adjusted, it will be
moved to the currently optimal position. (b) Value gap implied by the rational inattention
model.

As in the case of the models based on the Bayesian gap, we can estimate a con-

tinuous hazard function using the BIC to penalize excessive flexibility in the family

of functions considered. If we again consider the class of logistic-polynomial hazard

functions, we find that the best-fitting model makes the log odds of adjustment a lin-

ear function of the value gap, with a positive intercept and positive slope, as reported

in the middle panel of Table 1. The implied best-fitting value-based hazard function

is shown in the first panel of Figure 9. This corresponds to a random-fixed-cost model

in which the distribution of fixed costs has a CDF also given by the curve in that

figure. The implied distribution has an atom at zero fixed cost (about 8 percent of

the total probability), and a continuous distribution otherwise, with a positive prob-

ability density at zero and at all positive levels; the fixed cost can be unboundedly

large, but is finite with probability one.

We again use the BIC to measure the degree to which the data favor this model.

The best-fitting linear function λ(∆) achieves a statistic that is lower by 1,156 log

points than in the case of the best-fitting constant hazard. We also reject the hypoth-

esis of a constant fixed cost (the optimizing Ss model). Even if we assume (as in the
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previous section) that it is not possible to reduce the probability of adjustment below

some ε > 0 or to raise it above 1 − ε (with ε a free parameter that can be chosen

to fit the data), the lowest BIC statistic obtainable with such a model remains 1,116

log points higher than that obtained with our preferred random-menu-cost model.

Alternatively, we can also consider the performance of a step-function variant of the

flat hazard model, in which we suppose that for value gaps below a certain threshold,

the probability of adjustment is ε1 > 0, while above that threshold, the probability

rises to ε2 > 0 (not necessarily equal to 1-ε1). Allowing for this flexibility significantly

improves the fit over the flat hazard model, but the BIC remains 413 log points higher

than under the best polynomial-hazard model. Thus, the data strongly prefer a model

in which the probability of adjustment increases continuously with the value gap.

While our value gap measure does have some ability to predict the trials on which

subjects are more likely to adjust the slider, it remains a less successful predictor

than the Bayesian gap. This failure of the optimizing model to do better, even when

we allow for a very flexible possible distribution of fixed costs, may indicate that in

fact our subjects use a simple rule of thumb rather than a fully optimal strategy, or

perhaps that they are myopic optimizers. Alternatively, it may simply indicate that

our numerical approximation to the value function Vt(p) is not accurate enough; we

should expect our numerical estimates of the Bayesian gap to be much more accurate,

as it does not depend on any approximate characterization of observed behavior.

The model of optimization subject to a (possibly random) fixed cost also fails

in a more obvious way. It implies that conditional on adjustment of the slider in

period t, the new slider position p̂t should be exactly the p that maximizes Vt(p). In

the appendix, we show a scatter plot of the values of p̂t and arg maxp Vt(p); these

form a cloud similar to the one in panel (b) of Figure 10. While some of the noise

might in this case reflect error in our estimation of the continuation value function,

the noise in the relationship seems too great to be explained by the inaccuracy of our

approximation method alone. It appears that the decision where to move the slider

when it is adjusted, like the decision whether to adjust it, involves a significant degree
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(b) Slider positions

Figure 10: Predictions of the RI model. (a) The model-implied reference distribution µ̃
of slider positions and the empirical distribution µ, conditional on adjustment. (b) The
model-implied joint distribution of slider settings and Bayesian posterior mean, conditional
on adjustment. Blue circles: scatter plot of the actual slider positions [vertical axis] against
the Bayesian optimal setting. Red circles: scatter plot of the simulated RI slider positions
[vertical axis] against the Bayesian optimal setting.

of randomness. The hypothesis of fixed costs of adjustment (even randomly varying

fixed costs) cannot explain why this should be the case. Instead, the hypothesis of

inattentiveness on the part of decision-makers can equally explain the randomness of

both decisions, as we discuss next.

4.3 A Model of Inattentive Adjustment

We now consider a model of discrete adjustment in which both the decision when

to adjust the slider and the decision where to move it conditional on adjustment are

assumed to be optimal, but in terms of an objective that includes costs of paying

closer attention to both decisions. The particular theory of attention costs that we

consider is based on the theory of “rational inattention” proposed by Sims (2003,

2011) and applied to discrete adjustment problems by Khaw, Stevens and Woodford

(2016).10 The theory generalizes the models of inattentive adjustment by Woodford

10See Cheremukhin et al. (2011) for an earlier application of the theory of rational inattention
to the explanation of randomness in experimental data, albeit to a sequence of independent static
decision problems rather than to a dynamic setting like that considered here.
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(2009) and Stevens (2015) by relaxing the assumption that agents observe the true

state with perfect precision conditional upon deciding to review the current setting

(i.e., to adjust the slider), and by introducing the possibility of intrinsic preference

for particular actions.

We specify a subject’s behavioral rule by a sequence of functions Λt(ht), indicating

the probability of adjusting the slider on trial t for each possible history ht prior to

that trial’s ring draw, and a sequence of functions µt(ht), specifying a probability

measure µt over possible new locations for the slider (if adjusted on trial t) for each

possible prior history ht. In addition to assuming that it is costly for a subject to pay

closer attention to the history ht, we assume that there may also be intrinsic costs or

convenience associated with particular actions. For example, there may be an effort

cost associated with moving the mouse in order to adjust the slider position (as in the

model with a constant fixed cost considered above). Or there may be a preference for

choosing certain slider positions, independent of the monetary payoff expected from

choosing those positions; our subjects’ apparent preference for positions corresponding

to round numbers suggests that this is the case.

Let the measurable function c(p) denote the cost associated with choice of slider

position p, borne only at times when the slider is adjusted; a negative value corre-

sponds to a positive preference for that position choice. Similarly, let cadj denote the

cost associated with adjustment of the slider, and cnon the cost of non-adjustment

(which quantities are also possibly negative).11 Under the hypothesis of rational

inattention, the subject’s decision rule maximizes an objective of the form

E

{
T∑
t=1

[
r(p̂t; st) − ψ1I1 − ψ2ΛtI2 − Λtc

adj − (1− Λt)c
non − Λt

∫
c(p)dµt(p)

]}
,

(2)

where I1 is a measure of the amount of information used in deciding on each trial

whether to adjust the slider; I2 is a corresponding measure of the amount of infor-

11Note that the amount by which cadj differs from cnon may reflect costs of having to decide
about where to move the slider, whether or not it is actually moved, as in Alvarez et al. (2011).
Here such costs, if found to exist, would be purely cognitive.

24



mation used in deciding where to set the slider, on those trials where it is adjusted;

ψ1, ψ2 > 0 are attention cost parameters for the two types of information; and E{·}

indicates an expectation over the possible sequences of realizations of ring draws, the

possible outcomes of the random decision whether to adjust the slider each period,

and the possible outcomes of the random decision as to where to set the slider when it

is adjusted. Here, the history ht consists of the complete history of ring draws through

trial t− 1, together with the complete history of slider positions chosen through trial

t− 1. It does not include the history of evolution of the underlying state {pt}, as this

is not visible to the subject, no matter how closely he may pay attention.

The solution to this problem is given by an optimal adjustment hazard

log
Λt

1− Λt

= λ(∆t) ≡ log
Λ̃

1− Λ̃
+ ψ−1

1 ∆t (3)

and an optimal measure over new slider positions

µt(p) =
exp{ψ−1

2 Vt(p)}µ̃(p)∫
exp{ψ−1

2 Vt(p′)}dµ̃(p′)
. (4)

Here Vt(p) is again the continuation value function, and the ∆t in (3) is now the “RI

value gap” defined as

∆t ≡
∫
Vt(p)dµt(p)− Vt(p̂t−1). (5)

The value of the reference adjustment probability Λ̃ depends on both the uncondi-

tional probability of adjustment and on the intrinsic cost of adjustment relative to

non-adjustment (it would equal the unconditional probability if cadj = cnon); similarly,

the reference measure µ̃(p) depends on both the unconditional frequency distribution

of slider location choices and on the intrinsic costs of different locations. In the ab-

sence of any independent evidence about the intrinsic costs, we can treat Λ̃ and µ̃(p)

as free parameters to be estimated, from which we can then infer the implied intrinsic

costs.

Note that (3) implies that the probability of adjusting is again given by a contin-
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uous hazard function, and indeed that the hazard function must belong to a specific

parametric family: the log odds of adjustment are predicted to be a linear function

of ∆t, as in the case of the best-fitting random-fixed-cost model discussed in section

4.2, though here the definition of ∆t is different. Unlike the models considered above,

(4) implies that the slider location decision is similarly randomized. Note however

that the model reduces to the simple prediction that the new slider location will be

the value of p that maximizes Vt(p) in the limiting case ψ2 → 0.

In the work reported here, we do not optimize over a completely unrestricted ref-

erence distribution µ̃, and instead consider only distributions of the parametric form

µ̃(p) = Aµ(p)γ for some γ ∈ [0, 1], where µ̄ is the unconditional frequency distribu-

tion of slider positions.12 Within this family, the best-fitting reference distribution

corresponds to γ = 0.45. The implied distribution µ̃(p) is shown in the left panel of

Figure 10; note that that this distribution is significantly flatter than the empirical

distribution of slider location choices, also shown in the figure. (The implied intrinsic

cost function c(p) is shown in the appendix.)

The degree to which this model of the slider location decision matches the experi-

mental data when ψ2 = 0.64 is shown in the right panel of the figure. Here we show a

scatter plot of slider location choices against the value of p∗t at the time of the choice

(blue dots), with the corresponding scatter plot from a simulation of the rational

inattention model overlaid on it (red dots). In this simulation, we assume the same

sequences of ring draws (and hence the same evolution of the Bayesian posterior) as

in the experimental sessions, and we suppose that the slider is adjusted on exactly

the same trials as in the experimental sessions (so that the set of Bayesian posteriors

associated with trials on which the slider is adjusted is the same as in the experi-

mental data); but we suppose that when the slider is adjusted, the new position is

drawn from the distribution µt given by equation (4). We find that the predicted joint

distribution of the Bayesian posterior mean and the new slider position is reasonably

12Allowing a more flexible family would necessarily allow an even better fit to our data, at a
possible risk of overfitting. This simple family nests both the cases of zero intrinsic costs (γ = 1)
and a uniform reference distribution (γ = 0) as assumed in the “logit dynamics” model of Costain
and Nakov (2014).
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similar to the one observed in our data.

We turn next to the ability of the RI model to account for the timing of adjust-

ments of the slider. We can test the model by estimating a polynomial log odds model

for the hazard function, again assuming a flexible relationship as in equation (1) for

the case in which the argument of the polynomial function is the “Rational Inattention

value gap” defined in equation (5). The RI model makes a very specific prediction,

that λ(∆) should be an increasing linear function (equation (3)). We find that our

data are best fit by a model according to which the log odds are indeed an increasing

linear function of the gap, as predicted by the theory. The polynomial parameters

and the associated BIC value are shown in the bottom panel of Table 1 and the

polynomial hazard function is plotted in the second panel of Figure 9. The estimated

polynomial parameters imply values for the reference frequency of adjustment Λ̃ and

for the information cost ψ1, which we report in the bottom panel of Table 1 as well.

The estimated reference probability of adjustment, Λ̃ = 11.4% , is larger than the

empirical probability of adjustment, Λ̄ = 8.9%. This difference corresponds to a

relative cost cadj − cnon = −0.34, meaning an intrinsic preference for adjustment, so

that subjects adjust more frequently than would be optimal given the precision of

their estimate of where to set the slider. In fact, our subjects often adjust when the

RI value gap is negative. If instead, subjects adjusted only for non-negative the RI

value gaps, the estimated relative adjustment cost would be zero and the reference

probability of adjustment would be equal to the empirical probability of adjustment.

Subjects would adjust even more infrequently than we observe in our data.

Interestingly, the information cost ψ1 for the decision whether to adjust is esti-

mated to be roughly twice as large as the information cost ψ2 for the decision where

to move the slider conditional on adjustment.13 The BIC statistic implies that the

RI model best fits our data on the timing of slider adjustments, among all of the

models considered. Even relative to the best-fitting gap-based model, the BIC of the

13This finding is consistent with the results of Stevens (2015), who finds that the parameterization
that best fits micro price data is one in which the decision whether to review the firm’s pricing plan
is more costly than the decision about which prices to charge.
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RI model is lower by 489 log points, implying a relative posterior probability of the

RI model greater than 10106.

Hence the rational inattention model augmented with intrinsic costs succeeds in

capturing the main features of our data, at least in terms of the pooled data, describing

the average behavior of our population of subjects. It predicts both the timing of

adjustments (which is stochastic, with an adjustment hazard that is a continuously

increasing function of the expected value of adjusting) and the position to which the

slider is moved if adjusted (which is also stochastic, with a probability of movement

to each position that is a continuously increasing function of the expected value

associated with that position). Moreover, the specific functional form (3) that is

predicted for the adjustment hazard function fits our data better than any of the

other models considered above. Finally, the model allows (though it does not require)

the kind of “round-number bias” observed on the part of our subjects.

5 Discussion

We have used a controlled laboratory setting to study how successful our subjects

are in tracking a changing environmental state, and adjusting their behavior so as

to continue to maximize expected reward. While our experimental setting is very

stylized, the pattern of discrete adjustments that we observe shares some notable

features with data on the adjustment of individual goods prices by retailers. This

suggests that our findings about adjustment behavior in our experiment may well

be relevant to understanding discrete adjustment in economically relevant settings as

well, such as price-setting behavior.

Moreover, we observe a pattern of discrete adjustment reminiscent of that ob-

served in micro-level data on prices even in a setting where many factors that might

be thought relevant to price-setting are clearly not present: here, for example, there

are no costs of communicating a new policy to customers, no reasons to doubt whether

customers will recognize and respond to a price change, nor any reasons to fear the

emotional reaction of customers to a price change that they notice. The discrete-
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ness thus must result from some kind of cognitive constraint on subjects’ ability or

willingness to more closely track the reward-maximizing slider setting. And while we

might think of this as reflecting decisions made on the basis of imperfect informa-

tion, it is not imperfect information that results from the structure of the physical

environment, as in the model of Lucas (1972); instead, behavior seems to make use

of less precise information about the changing environment than has been presented

to the subjects, reflecting some form of inattention, limited memory, or other limit in

information processing capacity.

Our experiment allows us to reject many familiar hypotheses about adjustment to

a changing environment, at least as an explanation of the behavior of our subjects.

These include, most obviously, the benchmark of rational expectations (or perfect

Bayesian inference from the available data). Yet our data also clearly reject any

model that implies continuous adjustment each time a subject has a reason to adjust

their beliefs, such as the “sticky information” models of Mankiw and Reis (2002)

or Reis (2006), the “noisy information” model of Woodford (2003), or the rational

inattention model of Mackowiak and Wiederholt (2009).14 We can also reject time-

dependent models of discrete adjustment, such as the Taylor (1980) model of staggered

adjustment, since our data show that adjustments often occur very soon after a

previous adjustment of the slider (and there is also no evidence of a preferred time

length between adjustments).

Our experimental data on the timing of discrete adjustments are inconsistent with

the assumption of the Calvo (1983) model of price adjustment, according to which

an adjustment is equally likely to occur over any time interval, for we show that it

is possible to define measures of the degree of inappropriateness of the existing slider

position which have some ability to predict the timing of slider adjustments. Yet the

14The rational inattention model in which the subject must choose the slider position in each
period would generate discreteness in the slider positions themselves (as shown by Matejka (2015)
and Jung et al. (2015)), because our state variable is drawn from a distribution with bounded
support. However, it would not imply discreteness in the timing of adjustments, of the kind that
we observe here: subjects would be predicted to alternate with high frequency among the different
values of a discrete set of slider positions.
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kind of state-dependence indicated by our data is not the kind assumed in a simple

“Ss” model. In the case of none of the gap measures that we consider do we find

evidence of sharp thresholds such that adjustment occurs if and only if a threshold is

crossed. Moreover, under an “Ss” model, if adjustments do not occur constantly, then

one should never observe small adjustments, and one should observe few really large

adjustments. The distribution of adjustment sizes that we observe is inconsistent

with an “Ss” model on both counts.

The kind of models that are instead consistent with at least certain broad features

of our data are models of discrete adjustment in which the timing of adjustment is

stochastic, though the probability of adjustment is a continuous, increasing function

of some measure of the inappropriateness of the current slider setting; such models in-

clude those proposed by Caballero and Engel (1993, 1999), Dotsey, King and Wolman

(1999), Woodford (2009), and Costain and Nakov (2014). Among the several models

of this type that we fit to the timing of slider adjustments in our data, we find that

the best-fitting model (under a BIC criterion) is a generalization of the rational inat-

tention model of Woodford (2009). In this type of model, the randomness of decision

whether to adjust the slider at a given point in time is interpreted as resulting from

inattention, or more generally from imprecision in the subject’s subjective awareness

of the precise situation that has been revealed by the sequence of ring draws observed

to that point (due, perhaps, to a memory limitation).15 This interpretation of the

random timing of the slider adjustments is especially appealing in that it makes it

natural to expect that the position of the slider conditional on adjustment will also be

random, unlike a model where discrete adjustment is motivated by (possibly random)

fixed costs but decision-makers are assumed to be perfectly aware of the state at all

times. Our data are much better fit by a model in which the slider location decision

is also assumed to be stochastic.

An interesting departure of the experimental data from our model of inattentive

15Magnani, Gorry and Oprea (2016) document a failure to precisely optimize in a related task,
which can similarly be attributed to inattention, though there is no need to rely on memory in order
to make an optimal decision in their experiment.
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adjustment is the positive serial correlation in the subjects’ errors, conditional on

adjustment. As we have already shown, subjects do not perfectly close the gap

between their forecast and the optimal forecast upon adjustment. We further find

that the post-adjustment gap is serially correlated. Conversely, our model predicts

zero autocorrelation: the remaining gap is attributed to random noise in the signal

received at the time of the adjustment decision, assumed to be independent of all

previous signals and actions. To a significant extent, the serial correlation in our

experimental data is driven by serial correlation in the errors associated with slider

adjustments that are nearby in time. For example, among adjustments that occur

less than five ring draws apart, the first autocorrelation coefficient is 64.3%, whereas

for adjustments that occur more than 20 ring draws apart, the first autocorrelation

coefficient is 21.5%. A possible interpretation of this finding is that rather than the

signal upon which the decision is based being a function of the complete history of

ring draws (limited only by the cost of a more precise signal about that history),

it is based on an imprecise memory of this history, with errors that propagate over

time. We leave for future work an investigation of more complex models of inattentive

adjustment of this kind.

The similarity of the pattern of adjustment of the slider in our experiment to

retailers’ adjustments of the prices that they charge raises the possibility that the

failure of such prices to more perfectly track the retailer’s currently optimal (profit-

maximizing) price should be similarly attributed to rational inattention of the kind

that we model. Such a conclusion would have important consequences for monetary

economics, as discussed in Woodford (2009) and Stevens (2015). We believe that

experimental studies such as this one can play an important role in advancing our

understanding, not simply of the general importance of inattention in adjustment

dynamics, but of the specific models of inattentive decision-making that are most

consistent with what we know about human capabilities — and by doing so, can

contribute to the construction of more empirically realistic macroeconomic models.
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A Experimental Setup

We modified the experiment of Gallistel et al (2014) along five dimensions, to

make it more suitable to the focus of this paper: (1) we added a monetary reward

that varies with performance, (2) we simplified the data generating process and the

way we elicit responses, to ensure the tractability of the Bayesian inference problem,

(3) we added a numerical representation of the subject’s estimate, in addition to the

visual one, (4) we eliminated the possibility of discrete step sizes of the slider and

ensured smooth adjustment of the slider, and (5) we explained all features of the

setup and the data generating process to the subjects.

The reward function allows us to have more control over the objective of our sub-

jects, rather than having to make assumptions about what they might be maximizing.

∗We would like to thank Fernando Alvarez, Marios Angeletos, Marty Eichenbaum, Eduardo
Engel, Benjamin Hebert, Cosmin Ilut, Filip Matějka, Rosemarie Nagel, Erkut Ozbay, Isabel Trevino,
Laura Veldkamp, Alex Wolman, and conference and seminar participants at the Barcelona GSE
Summer Forum, the NBER Summer Institute, the University of Maryland, the Cowles Summer
Conference on Macroeconomics, and the JME-SNB-SCG conference for useful comments, and the
National Science Foundation for support of this research.
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We incentivized the subjects to do a particular task and we also displayed their cu-

mulative score in real time, so they could see how their strategies affect their reward.

We showed the subjects both a visual and a numerical representation of their cur-

rent estimate for multiple reasons. On the one hand, some subjects may have lower

numeracy than others. Additionally, it has been shown that probabilities are notori-

ously difficult to interpret and communicate without some visual representation. The

box showing them their current estimate helps the subjects visualize exactly what

they are trying to estimate. On the other hand, subjects may want to know what

probability they are setting with more precision. In fact, displaying the numerical

representation allows us to uncover evidence of a cognitive “round number” bias.

We conducted the experiment with 11 subjects, who each completed 10 sessions

over the course of several days. Each session had 1,000 ring draws and on aver-

age lasted 27 minutes. The subjects were undergraduate and Master’s students at

Columbia University. At the start of each session, the subjects received both written

and verbal instructions and they completed a 15-minute practice session to familiarize

themselves with the task.

2



B Optimal Bayesian Inference

Given a sample of T observations, we wish to determine the posterior distribution

over (n, p), where p is the most recent probability of drawing a 1 (namely a green

ring) and n is the number of periods for which the current regime has lasted so far.

A model of the data is specified by a probability p of drawing a 1 in the most recent

regime and a partition π = {ni} of the sample into successive regimes, where ni is

the length of regime i. Let τi denote the last observation of regime i. The likelihood

of the most recent n observations if the regime has been p over that time is

L(n, p) = pkn(1− p)n−kn , (B.1)

where kn is the number of successes in the n most recent observations. Let

L(n) ≡
∫
L(n, p)f(p)dp. (B.2)

and let Lτ (n) denote the average likelihood computed using the n observations ending

with observation τ . The ex-ante joint probability of the model (π, p) being correct

and the data being a particular observed sequence is given by

µ(π)(

N(π)−1∏
i=1

Lτi(ni))f(p)L(n, p),

where N(π) is the number of regimes under partition π and µπ is the ex-ante proba-

bility of partition π occurring in a sample of length T ,

µ(π) = (1− δ)T−N(π)+1(δ)N(π)−1. (B.3)

Summing over the set Π(n) of all possible partitions for which the final regime is of

length n, we define

Q(n) ≡
∑

π∈Π(n)

µ(π)

N(π)−1∏
i=1

Lτi(ni). (B.4)
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The posterior probability of (n, p) is

P (n, p) =
Q(n)f(p)L(n, p)

Σn≥1Q(n)L(n)
. (B.5)

The expected value of p sums over all n and integrates over p using the measure

P (n, p). The Bayesian estimate for the probability of drawing a 1 on the next obser-

vation takes into account the fact that the regime might change on the next draw,

which occurs with probability δ, and in which case, the estimate of the probability is

0.5:

B = (1− δ)
∫ ∑

n≥1

pP (n, p)dp+
δ

2
. (B.6)

Figure B.1 plots the distribution of the size of slider adjustments in our data

(left panel) and in the Bayesian benchmark. There is considerable variation in the

size of the slider adjustments when they occur, whereas according to the Bayesian

benchmark, the slider should be adjusted on every trial, and the adjustments should

seldom be very large, as shown by the right panel of the figure.
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Figure B.1: Distribution of the size of changes in the slider position ∆p̂t. Left panel: our
data, counting only trials on which the slider is moved (all subjects and all sessions). Right
panel: prediction under the hypothesis of Bayesian rationality.
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C Model Selection Method

We quantify the performance of different models by computing how much the

likelihood of our data is increased by allowing the adjustment hazard Λ to depend on

the model-implied gap ∆t between the optimal forecast and the current position. If

we assume that the adjustment decision αt (taking the value 1 if the slider is adjusted,

and zero otherwise) is an independent draw on each trial from a Bernoulli distribution

with probability Λ(∆t) of adjustment, then the log likelihood of the data sequence

{αt} is equal to

LL =
∑
t

{αt log Λ(∆t) + (1− αt) log(1− Λ(∆t))} .

We should not, however, be interested in the question of how large LL can be

made through choice of an arbitrarily complex function Λ(∆), as this is likely to

allow severe over-fitting of the particular adjustment sequence that happens to have

been observed (with sufficiently finely differentiated measures of ∆t on the separate

trials). In order to avoid such over-fitting, we penalize unduly complex hypotheses

about the way that the adjustment hazard can depend on the gap, and we choose

both the family of models (the value of k) and a specific model within that family (the

value of the parameter vector θ) so as to minimize the Bayes Information Criterion

(BIC)1

BIC ≡ −2LL + k logN, (C.1)

where N is the number of observations.

Suppose we have two model families represented by the sets of densities

Mj =
{
p(·|θj) : θj ∈ Θj

}
, j ∈ {1, 2} (C.2)

to explain the random vector y. Given n observations (y1, ..., yn) = Y , the relative

1See, for example, Burnham and Anderson (2002, chap. 6) for discussion of this approach to
model selection.
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posterior probability that the true model belongs to family 1 rather than alternative

family 2 is given by

log
P post(M1|Y )

P post(M2|Y )
= log

P prior(M1)

P prior(M2)
+B12, (C.3)

where the Bayes factor includes a penalty for the relative number of parameters of

the best fitting model in family 1,

B12 = log
P (Y |M1)

P (Y |M2

− 1

2
(k1 − k2) logN

=
1

2

(
BIC(M1)−BIC(M2)

)
.

(C.4)
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D Value Functions Approximation

This appendix describes the estimation method used to compute the value function

for the random menu cost model and for the inattention model. We estimate an

atheoretical statistical model of subjects’ behavior after any trial t conditional on the

slider setting p chosen on that trial and the posterior πt at that point, and we use

this atheoretical model to compute an implied value function Vt (p).

D.1 Empirical Model

Using our experimental data, we fit an empirical model of the dynamics for the

Bayesian posterior mean p∗t , for the Bayesian gap p∗t − pt−1, and for the probability

of adjustment Λt:

p∗t+1 −
1

2
= µ

(
p∗t −

1

2

)
+ vt, µ < 1 (D.1)

p∗t+1 − pt = λ (p∗t − pt−1) + ut, λ > 0 (D.2)

log

(
Λt

1− Λt

)
= θ0 + θ2 (p∗t − pt−1)2 (D.3)

where vt and ut are two i.i.d. mean-zero random variables with variances σ2
u and σ2

v ,

respectively.

Let us also approximate the CDF G (κ) of fixed costs by a function of the form

log

(
G (κ)

1−G (κ)

)
≈ γ0 + γ1κ, γ1 > 0. (D.4)

D.2 Random Fixed Cost Model

In the random fixed cost model, the expected value of a slider position p is the

expected value of all future expected monetary rewards, net of the expected value of

all future adjustment costs that are incurred:

Vt(p) = Rt(p)−Kt(p), (D.5)

7



where note that the continuation value also depends on πt, the distribution of posterior

beliefs at the beginning of trial t, which has been suppressed to reduce notation, and

where

Rt(p) ≡ E

[
T∑
s=t

r (ps; ss)
∣∣∣pt = p, πt

]
, (D.6)

Kt(p) ≡ E

[
T∑

s=t+1

1sκs

∣∣∣pt = p, πt

]
, (D.7)

where 1s is an indicator variable equal to 1 is the slider is adjusted on trial s and 0

otherwise, and κs is the value of the menu cost drawn on trial s. We can alternatively

write Rt neglecting a term that is independent of the position pt, and thus irrelevant

to our calculation of the continuation value:

Rt(p) = −
T∑
s=t

E
[
(ps − p∗s)

2
∣∣∣pt = p, πt

]
+ t.i.p. (D.8)

For t perceived by the subjects to be far enough away from the terminal trial T , we

can approximate the value of Rt by the value of

R∞(p) = −
∞∑
s=t

E
[
(ps − p∗s)

2
∣∣∣pt = p, πt

]
+ t.i.p. (D.9)

We can now use the empirical model described above, of the joint dynamics of the

slider position and of the Bayesian posterior mean to compute a numerical estimate

of R∞ for any hypothetical slider position that may be chosen on trial t, given the

posterior πt at that time:

R∞(pt) =

[
2λ2µ

1− λ2
+

2λµ (1− µ)

1− λµ

](
p∗t −

1

2

)
(pt − p∗t )

+
λ2

1− λ2

[(
p∗t −

1

2

)2

−
(
pt −

1

2

)2
]
− (pt − p∗t )

2 + t.i.p. (D.10)

We next consider the numerical estimation of Kt, which we can alternatively write
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as

Kt(p) =
T∑

s=t+1

E
[
Γ (Λs)

∣∣∣pt = p, πt

]
, (D.11)

where Λs is the probability of adjustment on trial s, and where, denoting by G the

CDF of fixed adjustment costs,

Γ (Λ) ≡ ΛE
[
κ
∣∣∣G(κ) ≤ Λ

]
(D.12)

multiplies the probability of adjustment by the mean adjustment cost conditional

on κ being below the threshold that is required for adjustment on a trial with that

particular probability of adjustment.

Given an estimate of the function Γ (Λ), we can use a purely empirical model of

the adjustment hazard (more precisely, of the joint dynamics of the slider position,

the Bayesian posterior, and the probability of adjustment) to obtain a numerical

estimate of the function Kt(p) for each trial. However, the function Γ (Λ) depends on

the distribution of fixed costs G, which in turn can only be inferred using a measure of

the continuation value we are trying to estimate. Hence we must jointly estimate the

parameters of the distribution of fixed costs and determine the best-fitting model of

the adjustment decision, using the estimate of the continuation value that is implied

by this parameterization of Γ (Λ) .

As above, we can neglect the terms that are independent of the slider position pt,

and, as long as t is not too close to T,we can use the approximation

K∞(p) =
∞∑

s=t+1

{
E
[
Γ (∆s)

∣∣∣pt = p, πt

]
− E

[
Γ (∆s)

∣∣∣pt = p∗t , πt

]}
. (D.13)

Using the approximation for the distribution of fixed costs G, we have that

Γ (Λ) ≈ 1

γ1

D(Λ||Λ), (D.14)
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where

D(Λ||Λ) ≡ Λ log

(
Λ

Λ

)
+ (1− Λ) log

(
1− Λ

1− Λ

)
. (D.15)

Using the empirical model of adjustment, we can approximate the relative entropy D

by

D(Λ||Λ) ≈ θ2
2

2

exp(θ0)

[1 + exp(θ0)]2
(p∗t+1 − pt)4. (D.16)

Then, using the empirical model for the dynamics of the Bayesian gap, and neglecting

terms that are independent of pt, we obtain

K∞(p) ≈ θ2
2

2γ1

exp(θ0)

[1 + exp(θ0)]2
[
p∗tk(p∗t+1(G)− p) + (1− p∗t )k(p∗t+1(R)− p)

]
, (D.17)

where p∗t+1(x) is the Bayesian posterior mean p∗t+1 in the case that the ring draw on

trial t is x, and where

k(p∗t+1 − pt) =
1

1− λ4
(p∗t+1 − pt)4 +

6λ2σ2
u

(1− λ2)(1− λ4)
(p∗t+1 − pt)2. (D.18)

The parameters that must be evaluated in order to compute Vt for each trial are

1. The parameters (λ, µ, σ2
u) of the empirical laws of motion (D.1)-(D.2).

2. The parameters (θ0, θ1) of the empirical hazard function in (D.3).

3. The parameter γ1 of the estimated distribution of fixed costs in (D.4).

The parameter γ1 however is estimated using our numerical estimate of the value

gap, ∆value
t ≡ maxp Vt(p) − Vt(p̂t−1). Hence we must solve a fixed point problem: a

conjectured value of γ1 is used to compute Vt(p) for arbitrary p, and hence the value

of ∆value
t on each trial; these values are then used to estimate a value of γ1,and this

value must turn out to be the same value as was assumed in order to compute ∆value
t .
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D.3 Inattention Model

In our model with information costs, the continuation value can be written in the

form

Vt(p) = Rt(p) − ψ1H1t(p) − ψ2H2t(p), (D.19)

where Rt(p) is defined as in (D.6), and H1t(p) and H2t(p) are the expected cumulative

costs (summing both information costs and the intrinsic costs of different actions) of

the two decisions on subsequent trials, if the slider is set at p on trial t, and the

posterior at that time is πt:

H1t(p) ≡ E

[
T∑

s=t+1

D(Λs||Λ̃)
∣∣∣pt = p, πt

]
, (D.20)

H2t(p) ≡ E

[
T∑

s=t+1

ΛsD(µs||µ̃)
∣∣∣pt = p, πt

]
, (D.21)

where Λs is the probability of adjustment on trial s, µs is the probability distribution

over new slider positions if the slider is adjusted on trial s, Λ̃ and µ̃ are the reference

measures, and D(µ||λ) =
∫

log dµ
dλ
dµ is the Kullback-Leibler divergence between two

distributions µ and λ.

As above, we can compute a numerical estimate of the function Rt(p) for each

trial, on the basis of an atheoretical empirical model of the joint dynamics of the

slider position and the Bayesian posterior on trials subsequent to t. The numerical

estimate that we use is the same as in our estimation of the model of optimization

subject to a fixed cost of adjustment.

We similarly compute numerical estimates of the functions H1t(p) and H2t(p),

using empirical models of the joint dynamics of the Bayesian posterior, the slider

position, the adjustment probability Λt, and the time-varying measure over possible

new slider positions µt. We proceed as follows: First, using the experimental data,

we estimate a value of Λt for each value of the Bayesian gap p∗t − pt−1. From this, we

11



compute a value for D(Λt||Λ̃),given Λ̃. We then fit a relationship of the form

D(Λt||Λ̃) ≈ a(p∗t − pt−1)4 + b(p∗t − pt−1)2 + const. (D.22)

Using this approximation together with the law of motion for the Bayesian gap, we

can then estimate

H1t(p) ≈ p∗th1(p∗t+1(G)− p) + (1− p∗t )h1(p∗t+1(R)− p) + t.i.p. (D.23)

where

h1(p∗t+1−pt) =
a

1− λ4
(p∗t+1−pt)4 +

[
6aλ2σ2

u

(1− λ2)(1− λ4)
− b

1− λ2

]
(p∗t+1−pt)2. (D.24)

Similarly, we can obtain an estimate for H2t(p), by first fitting to the data the

functional relationships

Λt ≈ m(p∗t − pt−1)2 + n, (D.25)

and

D(µt||µ̃) ≈ c

(
p∗t −

1

2

)2

+ d. (D.26)

We obtain

H2t(p) ≈ p∗th2

(
p∗t+1(G)− p, p∗t+1(G)− 1

2

)
+(1−p∗t )h2

(
p∗t+1(R)− p, p∗t+1(R)− 1

2

)
+t.i.p.

(D.27)

where

h2

(
p∗t+1 − pt, p∗t+1 −

1

2

)
= ( mc md 0 nc )(I−N)−1



(
p∗t+1 − pt

)2
(p∗t+1 − 1

2
)2(

p∗t+1 − pt
)2(

p∗t+1 − pt
)

(p∗t+1 − 1
2
)

(p∗t+1 − 1
2
)2

 ,

(D.28)
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where the matrix N is given by

N ≡


λ2µ2 λ2σ2

v 4λµσuv µ2σ2
u

0 λ2 0 0

0 0 λµ 0

0 0 0 µ2

 . (D.29)

Computing the estimates of H1(p) and H2(p) requires values for Λ̃ and µ̃ (in

order to estimate empirical models of the dynamics of the quantities D(Λt||Λ̃) and

D(µt||µ̃)), while the estimate of Vt(p) also requires values for ψ1 and ψ2. We start

with a set of parameters and compute an estimate of the value function. Once we

obtain a numerical estimate of the function Vt(p), we can find the values of ψ2 and

µ̃ that maximize the consistency of observed slider position choices with the model

prediction for the adjustment decision. Using this estimated model of the slider

position decision to estimate V adj
t , we can then find the values of ψ1 and Λ̃ that

maximize the consistency of the observed timing of adjustments of the slider with

the prediction for the slider position choice conditional on adjustment. Finally, we

check whether the estimated values for ψ1, ψ2, Λ̃, and µ̃ coincide with the values

assumed in computing the value function Vt(p). The numerical estimates reported

here represent a solution to this fixed-point problem. In order to compute the best-

fitting distribution of slider choices, µ̃, we assume the parametric form µ̃(p) = Aµ(p)γ,

where A is a normalizing constant that ensures that µ̃ is a probability distribution

that integrates to 1. The parameter γ ∈ [0, 1] determines how close the model-implied

reference distribution is to the empirical unconditional distribution (γ = 1, which

corresponds to the standard rational inattention model) versus the uninformative,

uniform distribution (γ = 0).
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E Overall Performance and Forecast Bias

Our subjects demonstrate the ability to track the varying state, although less

well than would be possible given the available information. As described in the

previous section, the subjects are rewarded using a function that depends on their

mean square error. Figure E.1 compares the scores of the subjects and the Bayesian

decisionmaker to two polar benchmarks: the complete information case in which the

subject knows the hidden probability at all times, and the no information case in

which the subject is fully rational but does not see any rings and therefore sets the

slider to the unconditional estimate of 0.5 on all draws. For each observer type, the

figure shows 11 bars, each corresponding to the realized draws seen by each of our 11

subjects across all sessions.

All the subjects outperform the no information benchmark, indicating that they

are tracking the state at least to some extent. They all underperform the Bayesian de-

cisionmaker: on average, the subjects’ scores are 2.5% lower than that of the Bayesian

observer. There is considerable heterogeneity in performance. One driver of this het-

erogeneity is the noise in the realized draws, which determines the difficulty of the

forecasting problem. This can be seen in the differences in scores in the full infor-

mation benchmark. Another driver of the heterogeneity in scores is heterogeneity in

behavior across the subjects. Some subjects (such as subject 3) are much closer to

the fully rational Bayesian benchmark than others (for example, subject 8).

E.1 Forecast Bias

A relatively simple way of characterizing the degree to which behavior resembles

or differs from the rational (perfect Bayesian) benchmark is to ask to what extent

forecasts correctly track the true state on average. One familiar diagnostic considers

whether forecasts are unbiased, in the sense that E[p̂t|pt] is equal to pt, the true

state. Gallistel et al. (2014) emphasize the extent to which their subjects are close

to perfectly unbiased, though they compare the median forecast conditional on the

14
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Figure E.1: Experiment data for all subjects and sessions. The scores are broken down
by subject. “True p” refers to the score that each subject would have received, given the
realized ring draws, had they known the underlying probabilities at all times. “Bayesian”
refers to the scores that would have been received by each subject, given the realized ring
draws, had they acted like the fully rational optimal Bayesian decisionmaker. “Uncondi-
tional” refers to the scores received under a constant forecast equal to the unconditional
prior of 0.5.

true p, rather than the mean.2 Robinson (1964) had similarly reported no significant

forecast bias (using the more conventional definition based on the conditional mean)

for any value of p, and this had been confirmed by additional studies summarized in

Peterson and Beach (1967).

We examine this question in the case of our data in the upper left panel of Figure

E.2. We pool the data from all subjects and sessions, and sort the data into 21

bins centered on multiples of 0.05, according to the true probability pt on that trial.

For each bin, the plot shows the mean slider position p̂t across those trials (as an

x), together with the inter-quartile range of slider positions associated with that

2Ricci and Gallistel (2016) report a similar finding in a variant of the experiment of Gallistel et
al. (2014) with a different data-generating process.
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Figure E.2: Measures of forecast bias. Upper left: E[p̂|p] versus p. Upper right: E[p∗|p]
versus p. Lower left: E[p̂|p∗] versus p∗. Lower right: E[p|p∗] versus p∗.

bin (shown as a vertical interval).3 As in the corresponding figure in Gallistel et

al.,4 the diagonal (i.e., the predicted location of the means under the hypothesis

of unbiasedness) is contained within the IQR in nearly every case, over the entire

range of true probabilities. However, it is not quite right to conclude from this that

the average slider position, conditional on any true state, is exactly that value. As

indicated in Table E.1, a linear regression of pt on p̂t, using our pooled data, yields

a regression line with a slope slightly less than 1; and the null hypothesis that the

regression line is the diagonal can be rejected with a p-value that is indistinguishable

from zero (at the precision allowed by Matlab).

3The horizontal coordinate of the x that is plotted for each bin is the mean value of pt for the
trials in that bin. Under the hypothesis that E[p̂t|pt] = pt for all values of pt, we should also observe
that E[p̂t|pt ∈ bj ] = E[pt|pt ∈ bj ], for any bin bj , i.e., that the X for bin bj should lie on the dashed
diagonal line.

4See their Figure 6.
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Regression: y = α + βx+ ε
y x α β F-stat
p̂ p 0.086 0.849 4056

(0.001) (0.002)
p∗ p 0.054 0.894 6901

(0.001) (0.001)
p p̂ 0.089 0.818 6273

(0.001) (0.002)
p̂ p∗ 0.033 0.952 647

(0.001) (0.002)
TABLE E.1: Regression tests of forecast bias, with alternative choices of the variables
y and x, corresponding to the four panels of Figure E.2. Standard errors are shown
in parentheses below the regression coefficients. The F statistic in each case is for
a test of the null hypothesis that α = 0 and β = 1, and under the null hypothesis
should be distributed as F (2, 109888). All null hypotheses have p-values of less than
10−279.

Unbiasedness in this sense is not, however, the only hypothesis of interest, and

is not even a prediction of rationality. Even an ideal Bayesian observer would not

be able to track the hidden true probability perfectly, and as shown in the upper

right panel of the figure, the forecasts of an ideal Bayesian observer would not be

“unbiased” in the sense just mentioned: we should not expect E[p∗t |pt] to equal pt.

Because of noise in the series of ring draws as an indication of the true probability,

the ideal observer would on average over-estimate the probability when pt is low, and

under-estimate it when pt is high. Bayesian rationality instead would require that

(under the prior implied by our data-generating process) E[pt|p∗t ] = p∗t .

In fact, even if subjects do not produce fully optimal forecasts (due for example

to memory limitations), if their forecasts are Bayes-rational conditional on the infor-

mation used to make the forecast, they should satisfy the property that E[pt|p̂t] = p̂t

for all slider positions p̂t. We check for this property in the lower right panel of Figure

E.2, where the trials are now binned according the value of p̂t and the mean value

of pt associated with each bin is indicated by the vertical coordinate of the x. This

rationality condition is not grossly rejected; the diagonal falls within the IQR (if only

barely) for each of the bins. However, we note a fairly clear pattern in the figure, with

the mean true p above the forecast whenever p̂ is below 0.3, and below the forecast
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whenever p̂ is above 0.65. And indeed, a regression of pt on p̂t using our pooled data

yields a slope coefficient significantly below 1, as shown in Table E.1.

The pooled data from our subjects is instead more consistent with an alternative

hypothesis, namely that subjects’ forecasts are distributed around the rational fore-

cast, and equal to it on average — that is, that E[p̂t|p∗t ] = p∗t for all values of p∗t . This

is related to the hypothesis of unbiasedness that Gallistel et al. test, but recognizes

that we can at best expect subjects’ forecasts to reflect the optimal Bayesian estimate

of the state, and not the hidden state itself. It is also the hypothesis of “rational ex-

pectations” as originally proposed by Muth (1961), though that term has since come

to be associated with the hypothesis of full Bayesian rationality, since the work of

Lucas (1972).

This hypothesis is tested in the lower left panel of Figure E.2. We see that when

the data are binned according to the value of p∗t (rather than by the value of pt, as in

the upper left panel), the conditional mean indicated by the x is close to the diagonal

for all bins. We can nonetheless reject that the hypothesis holds exactly in our data

through a regression test, as shown in Table E.1; but note that in this case the F

statistic is less gigantic than for the other null hypotheses considered in the table.

Note that even to the extent that this last hypothesis is accepted as an approxi-

mate characterization of our data, this does not mean that our subjects’ forecasts are

Bayes-rational; if they (always) were, not only would the x marks be exactly on the

diagonal, but the IQR would be an interval of zero length for each bin in the lower left

panel of Figure E.2, which is not the case. Subjects’ forecasts can be more accurately

characterized as equal to the rational forecast plus random noise (a characterization

that also explains the slope less than 1 in the lower right panel).
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F Additional Figures
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(a) Equal-width bins
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Figure F.1: Hazard functions for the slider adjustment probability as a function of the
Bayesian gap. (a) Nonparametric empirical hazard plotting the fraction of trials on which
adjustment occurs, for each range of values of the gap, with equal-width bins. (b) Similar
plot, but with boundaries chosen so that each bin contains an equal number of observations.
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Figure F.2: Hazard functions for the slider adjustment probability as a function of the
Bayesian gap for each individual subject.
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Figure F.3: Adjustment probability as a function of the value gap, computed under an
assumption that if the slider is adjusted, it will be moved to the currently optimal position.
Nonparametric empirical hazard with the boundaries are chosen so that each bin contains
an equal number of observations.
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Figure F.4: A contour plot of the average value gap ∆t associated with alternative pairs
of values for the slider position p̂t [the horizontal axis] and the Bayesian posterior mean p∗t
[the vertical axis], when the continuation value function Vt(p) is numerically approximated
on the basis of an empirical model of the subsequent adjustment dynamics.We see that the
value gap is related to the Bayesian gap (which corresponds, in the figure, to the distance of
points from the diagonal). If the value gap were purely a monotonic function of the absolute
value of the Bayesian gap, the contour lines would be the family of parallel straight lines
with a slope exactly equal to one. In this case, the predictions of the optimizing model
would be identical to those of the gap-based model with a symmetric hazard function. This
is not quite true, since in the optimizing model, the value of adjusting also takes into account
future expected adjustment costs, in addition to the current gap; nonetheless, the lines are
close to those predicted by the Bayesian gap model.
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Figure F.5: The distribution of slider positions that are chosen, conditional on adjustment.
(a) Scatter plot of the slider position [vertical axis] against the Bayesian optimal setting;
(b) scatter plot of the slider position [vertical axis] against the one that would maximize the
continuation value function. The relationship between the optimal Bayesian forecast and
the position chosen by the subjects upon adjusting the slider is very noisy. Nonetheless, the
Bayesian setting has predictive value: running a regression yields a slope that is very close
to 1. Likewise, panel (b) also shows a large dispersion in the actual slider positions that
are chosen, even conditioning on the currently optimal slider position (at least the one that
would be implied by our estimate of the value function) — especially when the currently
optimal position is in the middle of the interval of possible positions. This suggests a
considerable degree of random error (presumably reflecting inattentiveness) when the slider
is moved. Such errors must be taken into account in judging what an optimal decision
should be as to whether the slider should be adjusted at all, as they should reduce the
expected increase in payoff that can be achieved by adjustment.
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Figure F.6: A contour plot of the average RI value gap ∆t associated with alternative pairs
of values for the slider position p̂t [the horizontal axis] and the Bayesian posterior mean p∗t
[the vertical axis].
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Figure F.7: Adjustment probability as a function of the value gap implied by the rational
inattention model. Nonparametric empirical hazard, with the boundaries are chosen so that
each bin contains an equal number of observations.We see that the adjustment probability
is monotonically increasing with this gap measure, as predicted by the model.
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Figure F.8: The inattentive model-implied intrinsic relative cost function, c(p) associated
with different slider positions. Negative values of the intrinsic cost function are associated
with preferred slider positions (which are chosen by subjects more than would be predicted
by the rational inattention model without intrinsic costs), while positive cost values are
associated with disliked slider positions. In addition to our subjects preferring extreme
values, we also note that subjects are more likely to choose certain interior slider positions
than others as well.
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G Full sample results

In this appendix we present results for the full sample (all 110 sessions), including

the repeated sessions. Figure G.1 shows the fraction of trials on which the slider is

adjusted, if the data are sorted into bins according to the value of the Bayesian gap

at the time of the decision whether to adjust the position.
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(a) Equal-width bins
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Figure G.1: Nonparametric empirical hazard functions for the slider adjustment probability
as a function of the Bayesian gap. (a) Fraction of trials on which adjustment occurs, for
each range of values of the gap, with equal-width bins. (b) Similar plot, but with boundaries
chosen so that each bin contains an equal number of observations.

The top panel of Table G.1 presents the best fitting Bayesian “gap-based” models

of the adjustment for the adjustment decision. The polynomial coefficients are very

similar to those obtained only using the unique sessions, and moreover, the ranking

of the alternative models, in terms of the BIC statistic, is preserved. The different

magnitudes of the BIC statistics reflects the differences in the sample size. The lower

panel of the table presents the best fitting “value-based” models of the adjustment

for the adjustment decision. Once again, the polynomial coefficients are very similar

to those obtained only using the unique sessions, and the ranking of the alternative

models, in terms of the BIC statistic, is also preserved.
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TABLE G.1: Best fitting models for the full sample, including repeated sessions

Gap Models k θ0 θ1 θ2 BIC
Constant hazard 1 -2.34 – – 65,473
Polynomial hazard 3 -2.53 -0.41 7.37 64,112
Symmetric poly. 2 -2.53 – 7.38 64,145

k ε ∆ ∆̄ BIC
Ss with errors 3 0.088 -0.641 0.745 65,464
Symmetric Ss 2 0.088 -0.923 0.923 65,485

Value Models k θ0 θ1 ε ∆̄ BIC
Constant hazard 1 -2.34 – – – 65,473
Polynomial hazard 2 -2.50 0.92 – – 64,287
Ss with errors 2 – – 0.088 3.87 65,433

k θ0 θ1 ψ1 Λ̃ BIC
Rational inattention 2 -2.07 0.84 1.19 0.11 63,496
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